Polar or Apolar—The Role of Polarity for Urea-Induced Protein Denaturation

نویسندگان

  • Martin C. Stumpe
  • Helmut Grubmüller
چکیده

Urea-induced protein denaturation is widely used to study protein folding and stability; however, the molecular mechanism and driving forces of this process are not yet fully understood. In particular, it is unclear whether either hydrophobic or polar interactions between urea molecules and residues at the protein surface drive denaturation. To address this question, here, many molecular dynamics simulations totalling ca. 7 micros of the CI2 protein in aqueous solution served to perform a computational thought experiment, in which we varied the polarity of urea. For apolar driving forces, hypopolar urea should show increased denaturation power; for polar driving forces, hyperpolar urea should be the stronger denaturant. Indeed, protein unfolding was observed in all simulations with decreased urea polarity. Hyperpolar urea, in contrast, turned out to stabilize the native state. Moreover, the differential interaction preferences between urea and the 20 amino acids turned out to be enhanced for hypopolar urea and suppressed (or even inverted) for hyperpolar urea. These results strongly suggest that apolar urea-protein interactions, and not polar interactions, are the dominant driving force for denaturation. Further, the observed interactions provide a detailed picture of the underlying molecular driving forces. Our simulations finally allowed characterization of CI2 unfolding pathways. Unfolding proceeds sequentially with alternating loss of secondary or tertiary structure. After the transition state, unfolding pathways show large structural heterogeneity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of urea with amino acids: implications for urea-induced protein denaturation.

The molecular mechanism of urea-induced protein denaturation is not yet fully understood. Mainly two opposing mechanisms are controversially discussed, according to which either hydrophobic, or polar interactions are the dominant driving force. To resolve this question, we have investigated the interactions between urea and all 20 amino acids by comprehensive molecular dynamics simulations of 2...

متن کامل

Heat capacity in proteins.

Heat capacity (Cp) is one of several major thermodynamic quantities commonly measured in proteins. With more than half a dozen definitions, it is the hardest of these quantities to understand in physical terms, but the richest in insight. There are many ramifications of observed Cp changes: The sign distinguishes apolar from polar solvation. It imparts a temperature (T) dependence to entropy an...

متن کامل

REASSOCIATION AND REACTIVATION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM STREPTOMYCES AUREOFACIENS AFTER DENATURATION BY 6 M UREA

Glucose 6-phosphate dehydrogenase (G6PD) from Streptomyces aureofaciens was purified and denatured in 6 M urea. Denaturation led to complete dissociation of the enzyme into its inactive monomers, 98% loss of the enzyme activity, about 30% decrease in the protein fluorescence and a 10 nm red shift in the emission maximum. Dilution of urea-denatured enzyme resulted in regaining of the enzyme acti...

متن کامل

Urea-induced denaturation of preQ1-riboswitch.

Urea, a polar molecule with a large dipole moment, not only destabilizes folded RNA structures but can also enhance the folding rates of large ribozymes. Unlike the mechanism of urea-induced unfolding of proteins, which is well understood, the action of urea on RNA has barely been explored. We performed extensive all-atom molecular dynamics simulations to determine the molecular underpinnings o...

متن کامل

Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase.

The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008